A new treebank interface for the digital humanities

Tinna Frímann Jökulsdóttir
Anton Karl Ingason
Overview

1. Introduction
2. PaCQL
3. The software
 - The search engine
 - The web interface
4. Example
 - How to use
 - Processing the results
5. Next up
Introduction

• IcePaHC
 • The IcelandicParsed Historical Corpus.
 • Contains just over a million manually corrected words.
 • Icelandic texts from every century between the 12th and the 21st centuries inclusive.
 • The annotation scheme mostly compatible with the one used in the PennParsed Corpora of Historical English.

• But how can we efficiently utilize those treebanks?
Introduction

• Why not use existing software?
 • Tgrep
 • Corpus Search
 • NLTK (Python)
 • And so on...

• Pros and cons everywhere – we are trying to collect and maximize the pros.

• Especially those that are useful in linguistic research, notably in historical syntax.
PaCQL

• The basic syntactic relationships:
 • **idoms**: immediately dominates
 • **idomsonly**: immediately dominates x and nothing else
 • **idomsfirst**: immediately dominates the leftmost child x
 • **idomslast**: immediately dominates the rightmost child x
 • **doms**: dominates at an arbitrary depth
 • **sprec**: sisterwise precedence
 • **precedes**: precedence regardless of embedding
 • **hassister**: sisterhood
 • **sameindex**: A has the same index as B
PaCQL

• The special relationships:
 • **haslabel**: match node label
 • **domswords**: match nodes dominating N orthographic words
 • **domswords<**: match nodes dominating less than N words
 • **domswords>**: match nodes dominating more than N words
 • **idomslemma**: POS-tag has child that has a specific lemma
PaCQL

- Text level metacoding:
 - text textid: id of the text
 - text year: (estimated) year the text was written
 - text century: century the text was written
 - text genre: main genre of the text
 - text subgenre: subgenre of the text
 - text postnt: 0 if written before New Testament translation, 1 otherwise
 - text texttrees: total number of trees in the text
 - text meantreewords: mean number of words per tree in the text
 - text mediantreewords: median number of words per tree in the text
 - text meanwordletters: mean number of letters per word in the text
 - text lexicaldiversity: type frequency of word forms divided by the total number of words in the text
PaCQL

- Tree level meta coding:
 - `tree treeid`: unique id for the tree
 - `tree treewords`: number of words in the tree

- Node level meta coding:
 - `node label A`: the label matched by A
 - `node nodestring A`: the string of leaves dominated by A
 - `node nodewords A`: the number of words dominated by A
The software

- The search engine: Python.
- Employs a fast in-memory index that cuts down waiting time.
- The server: Pyro 4
- The web interface: www.treebankstudio.org
Example

• The evolution from object-verb (OV) word order to the verb-object (VO) order in Icelandic.
• An example in English:
 a. She will [the bread eat] - OV
 b. She will [eat the bread] - VO
• The same example in Icelandic:
 a. Hún mun [brauðið borða] - OV
 b. Hún mun [borða brauðið] - VO
Example

- Tutorial (www.treebankstudio.org)
 - Documentation
 - Syntax
 - Results
 - Processing the results
 - Etc.
Next up

- Make the system available to the users of other treebanks.
- Release the PaCQL search engine under a free and open source software license.
- The output:
 - Offer more visualized and interactive output types.
 - Provide tools for more sophisticated analysis that now is dependent on other software, like R or Excel.
Next up

• The query language:
 • Negation.
 • Equality testing across matched nodes and quantification.
• The user interface:
 • Re-design with software quality metrics in mind.
 • More visual input possibilities (drag&drop).
• The search engine:
 • Of course, we are always seeking to improve the speed.

...et cetera.
References

Further information about the project and references can be found here:

IcePaHC can be accessed here: